Dan Wesson Ph.D.
The Wesson Lab explores the neural processing of sensory information in the context of behavior. This line of questioning provides an ideal platform to test specific hypotheses regarding the neural basis of sensory dysfunction in neurological disorders, including dementias and addiction, wherein sensory processing is aberrant. To accomplish these major goals, they utilize a variety of methods, ranging from multi-site electrophysiological recordings or optical imaging from defined brain structures in behaving animals to cutting-edge operant behavioral assays, some of which they perform in viral/genetic animal models with precise neural perturbations. The goals for their research include:
1) Define brain systems for sensory information processing and motivated behaviors:
The ventral striatum (VS) is an integrative network of brain structures, which: 1) processes sensory information, and 2) is necessary for both motivated behaviors and the rewarding effects of psychostimulants. The olfactory tubercle (OT) subregion of the VS resides in a likely advantageous position for guiding motivated behaviors, since it both receives monosynaptic input from the olfactory bulb and also has direct interconnectedness with other VS regions and the basal ganglia. The role of the OT in sensory-driven motivated behaviors is not defined.
A major line of research in the Wesson Lab, therefore, is to identify manners whereby the OT encodes odor sensory information and to learn how this information consequently gets distributed throughout interconnected brain structures. They are also interested in defining sources of information into the OT. Work from their group is the first to demonstrate how neurons in the OT encode odor information in behaving subjects and how these processing strategies are shaped by the learned meaning of the odors (viz., valence). They are now working to identify complementary cellular mechanisms of odor valence and understand how this information is distributed among interconnected neural ensembles.
A related major line of research in the Wesson Lab is regarding the OT’s role in motivated behaviors. Despite elegant work showing that the OT is needed for both reward behavior and psychostimulant effects on behavior, the OT is not even incorporated into many prevalent models of the brain’s reward system. This omission may in part be explained by a lack of the specific cellular mechanisms whereby the OT impacts reward-guided behavior. Work from their group is the first to demonstrate how neurons in the OT encode goal-directed actions and natural reinforcers and how these are dictated by the motivational state of the animal. Ongoing work in this lab is now resolving important features whereby the OT subserves motivated behaviors. This work is highly relevant to understanding brain mechanisms of addictive behaviors.
2) Determine why, and how, the olfactory system is vulnerable to early onset dementias, including Alzheimer’s disease and Parkinson’s disease:
A question of wide importance to the understanding of AD and PD is how these diseases progress. At a circuit level, this problem can be thought of specifically by the following question: How can subtle and sometimes undetectable levels of local pathogens result in severe, wide-spread nervous system dysfunction? The lab addresses this question in the mammalian olfactory system, which yields ideal tractability for physiological recordings as well as a nearly linear, yet also distributed, information processing stream. This is a clinically-relevant model, especially given the early presence of some AD and PD neuropathology (during early Braak & Braak stages) in the olfactory bulbs of persons afflicted with the disease. The lab’s work seeks to allow the direct assessment of the cellular-level contributions of peripheral nervous dysfunction (‘upstream’) on central (‘downstream’) processing of behaviorally/perceptually-relevant information in the context of AD and PD and will therefore yield novel data on circuit progression of these diseases.
3) Define mechanisms whereby the olfactory system is shaped by cognitive state:
Cognition shapes sensory processing. Work by numerous groups has shown that olfactory perception and odor processing are both influenced by cognitive factors. The influence of attention, specifically, on the cellular processing of odors is entirely unknown. This is a very intriguing question, since olfactory cortical structures receive direct olfactory input in the absence of a thalamic relay—the proposed origin of attentionally-mediated effects in other sensory systems. Therefore, ongoing work in the Wesson Lab has invested into developing a sophistical behavioral tool to allow for manipulating selective attention to odors and testing important questions regarding the mechanisms, whereby attention shapes the representation of odor information in the brain. This work is relevant for understanding how information travels within the brain in the context of moment-to-moment changes in cognitive state, which can be impacted in many neurological disorders.
Jonathan Bird Ph.D.
The Bird Lab is interested in how myosin molecular motors generate force on actin filaments and how defects in this fundamental cytoskeletal mechanism cause human disease. Dr. Bird studies this question using hair cells, the neural receptors for hearing and balance that are found within the inner ear. Hair cells transduce sounds and accelerations using actin-based stereocilia that protrude from their surface. The loss of stereocilia and hair cells, due to noise exposure, ototoxic drugs and aging, is a significant cause of permanent hearing impairment that is estimated to affect more than 360 million people worldwide (1).
Myosin motors are critical for hair cell sensory transduction, with mutations in no fewer than six classes of myosin genes (I, II, III, VI, VII & XV) causing hearing loss. Using a multi-disciplinary approach, the Bird Lab is investigating how myosin motors regulate molecular trafficking within stereocilia and how this ultimately controls actin dynamics and stereocilia architecture. The lab combines data from experiments with mutant animal models, cutting-edge microscopy in live cells, and purified proteins in biochemical and single molecule assays. These studies are expected to reveal the detailed mechanisms for how stereocilia mechanosensors are assembled and maintained, and they will inform the wider goal to therapeutically enhance repair processes to promote healthy, lifelong hearing.
References: http://www.who.int/mediacentre/factsheets/fs300/en/
Gemma Casadesus
The central hypothesis that drives the work in the Casadesus laboratory is that age-related dysregulation of fundamental physiological processes precedes and/or underlies the development of Alzheimer’s Disease (AD). Based on this hypothesis the primary aim is to identify age-related or environmentally-driven (exposome) mechanisms that underly increased AD risk (or protection). The ultimate goal is to develop novel and better targeted disease-delaying therapeutic strategies for AD.
A current major interest in the laboratory is to understand how dysregulation of specific hormones due to aging or lifestyle choices, impact neuronal structure and plasticity, cellular metabolism, and cognition. The Casadesus laboratory is also interested in identifying the genomic signatures that may explain sex-specific vulnerability or protection to these hormone changes. Particular focus is placed on understanding the roles of under-studied reproductive and metabolic hormones, their receptors, and neuroendocrine circuits. These include but are not limited to luteinizing hormone and amylin in the context of menopause and obesity/T2D.
To address such questions, the Casadesus laboratory employs a broad range of in vivo and in vitro techniques, spanning from behavioral phenotyping assays, standard biochemical measures, and confocal imaging, to systems neuroscience approaches (transcriptomics) and cutting-edge gene editing techniques using CRISPR/Cas9 and virus delivery approaches.
Eli Chapman
The Chapman Lab is a chemical biology lab that focuses on the discovery and development of small-molecule modulators of cellular quality control machinery. These compounds are used to answer biological questions, to validate potential therapeutic targets, and as possible therapeutic leads. There are three primary areas of focus: 1) The discovery and development of isoform selective HSP70 inhibitors as potential cancer therapeutics. 2) The development of HSP60/10 inhibitors as cancer therapeutics and GroEL/ES (the bacterial HSP60/10) inhibitors as antibiotics. 3) The discovery and development of NRF2 activators as chemopreventive compounds and NRF2 inhibitors as cancer therapeutics.
The HSP70 chaperones have been shown to be upregulated in a variety of cancers and to correlate with poor outcomes. They have, therefore, been proposed as potential drug targets. However, there are 13 HSP70 isoforms in the human body and it has been shown that there are clear advantages to being able to target one isoform selectively. We have recently reported the discovery and development of compounds with isoform selectivity. We continue to develop these compounds, striving to increase selectivity, potency, and bioavailability.
About 10 years ago, we reported a high-throughput screening campaign to discover GroEL/ES inhibitors. We have gone on to optimize some of these scaffolds, demonstrating their potential as antibiotics especially against MRSA. We have also begun exploring the human HSP60/10 chaperone system as a potential anti-cancer therapy. These latter studies will help to define HSP60/10 as a potential cancer target and the role of extracellular HSP60/10 in inflammation.
In collaboration with the lab of Dr. Donna Zhang, we have been working to discovery activators and inhibitors of the cytoprotective transcription factor NRF2. NRF2 has long played a role in the chemoprevention field, where it has been shown that activation of NRF2 confers protection against cellular insults. But, it has been shown that many cancers have upregulated NRF2, conferring a survival advantage. Therefore, we have been working to discover and develop compounds that directly target NRF2 and block its protective functions.
Olga Guryanova MD, Ph.D.
Olga Guryanova is an NIH-funded investigator with 15+ years of experience in translational cancer research. Her scientific career has been driven by a commitment to innovative studies into molecular mechanisms of chemotherapeutic resistance and rational strategies for cancer cell re-sensitization, with translational implications and a focus on precision oncology. After training at the Cleveland Clinic with Dr. Jeremy Rich, an expert in malignant brain tumors, she completed a postdoctoral fellowship at Memorial Sloan Kettering Cancer Center (MSKCC) under Dr. Ross Levine, a world-class authority in hematologic malignancies. Dr. Guryanova’s research has been published in top-tier journals such as Nature Medicine, Cancer Cell, and Clinical Cancer Research as a first and a senior author. She is currently an Assistant Professor and member of the University of Florida Health Cancer Center, where her laboratory is focused on delineating the mechanisms of the cross-talk between epigenetics and chromatin organization, and how these processes contribute to the development of myeloid malignancies such as acute myeloid leukemia (AML), resistance to therapies, and clonal evolution. Ultimately, Dr. Guryanova would like to harness this mechanistic understanding to develop improved therapeutic approaches for leukemia.
David Hammers
The Hammers Lab researches physiological and pathophysiological mechanisms of skeletal and cardiac muscle, particularly those associated with genetic diseases known as muscular dystrophies. The primary motivation of these efforts is to identify potential therapeutic targets that can be exploited to develop treatments for muscle and heart diseases using small molecules and/or adeno-associated virus (AAV)-based gene therapies.
In recent work, the Hammers Lab has identified a group of repurposed drugs that act as “remodeling therapeutics” when used to treat severely diseased muscles by reducing muscle fibrosis and rejuvenating muscle regeneration. These discoveries have led to the initiation of new projects investigating the cellular dynamics that occur during the progression of muscle diseases in the absence and presence of remodeling therapeutics, as well as evaluating the potential for these remodeling therapeutics to improve the long-term efficacy of other current or emerging muscular dystrophy treatment strategies.
Jeffrey K Harrison Ph.D.
Glioblastomas are a highly malignant type of brain tumor with very few treatment options. Efforts in Dr. Harrison’s laboratory are aimed toward understanding mechanisms by which immune cells contribute to tumor progression and resistance to immunotherapies. We focus on myeloid cell populations that gain access to the glioma microenvironment, studying the mechanisms by which they traffic to the tumor and exert their immune-suppressive functions. The development and application of chemokine receptor antagonists to treat these human high-grade gliomas is also a primary goal of the laboratory.
My laboratory has a long history of characterizing roles of chemokines in various physiological and pathological states of the central nervous and cardiovascular systems. Of particular emphasis has been the study of the chemokine fractalkine (CX3CL1) and its receptor, CX3CR1, as well as more recent efforts to target the CCL2/CCL7/CCR2 axis. Historically, the scope of the research program has included in vitro and in vivo approaches that include 1) structure-function analysis of chemokines and chemokine receptors, 2) studies on the regulation of expression of chemokines and chemokine receptors, 3) understanding signaling mechanisms associated with chemokine receptor activation, 4) use of chemokine receptor-deficient mice, to address the role of various chemokine systems in disease, with recent focus on using these mice to understand the roles of chemokine in malignant glioma, and 5) use of chemokine receptor antagonists in animal models of glioblastoma.
May Khanna
Rajesh Khanna
Daniel Kopinke Ph.D.
Visit website for more detail @ www.kopinkelab.com
In many tissues, wound healing and regeneration depends on stem cells to replace the lost or damaged cells. In injured skeletal muscle, a dedicated muscle stem cell population gives rise to new muscle myofibers after an acute injury. In chronic diseases, however, muscle regeneration fails and healthy muscle is gradually replaced with fibrotic scar and fat tissue, a process called fatty fibrosis. This fatty fibrosis of muscle is a prominent feature of chronic muscle diseases such as Duchenne muscular dystrophy (DMD), sarcopenia (age-related loss of skeletal muscle and strength), obesity and diabetes. There are no cures for DMD and no specific therapies for either DMD or sarcopenia.
Coordinating cell-cell interactions is critical for regenerating complex tissues after injury or disease. Primary cilia are small, immotile, microtubule-based cell projections and have evolved to receive and interpret extracellular cues. Cilia play a crucial role in intercellular communication during development and defects in cilia lead to embryonic lethality in both mice and humans. While cilia are present on the majority of cells in our body, there’s little known about how they function or participate in the repair of adult tissues.
It was recently discovered that cilia coordinate muscle repair by controlling the communication between the muscle stem cell population and its support cells. The Kopinke Lab is now building on this work by investigating how ciliary signaling coordinates cellular communication between stem cells and their niche, to understand how cilia-based communication goes awry in disease and to identify novel pharmacological tools to combat cilia-associated diseases such as fatty fibrosis.
Brian K Law Ph.D.
Some of the Law Lab’s primary research interests revolves around cyclin-dependent kinases (Cdks) in mammary tumorigenesis and chromosomal instability, and Cdk regulation by the mTOR and TGFβ pathways. This research involves the use of novel models to understand how the activation of Cdks in the mammary gland causes tumor formation by dysregulation of cell proliferation and through genetic alterations that result from chromosomal instability. These models also provide systems for testing new therapeutic strategies, including non-ATP competitive Cdk inhibitors discovered in their laboratory and for targeting the upstream signaling pathways, such as the mTOR and TGFβ axes, that stimulate Cdk kinase activity.
Other Areas of Interest
Mechanisms by which CDCP1 Promotes Breast Cancer Metastasis: The CDCP1 protein functions as a scaffold to bring together and facilitate synergy between the oncoproteins Epidermal Growth Factor Receptor (EGFR) and the Src tyrosine kinase. This results in disassembly of cell-cell and cell-substratum adhesion complexes and may facilitate cancer metastasis by permitting cancer cell invasion and de-adhesion. Current work is directed toward identifying pharmacological strategies to block the pro-metastatic functions of CDCP1. (Law, M., et al. Oncogene (2013) 32:1316; Law, M., et al. Breast Cancer Research (2016) 18:80)
Activation of Death Receptors 4 and 5 by Altered Disulfide Bonding as a New Approach to Cancer Therapy: Our collaborative team identified a novel class of anticancer agents termed Disulfide bond Disrupting Agents (DDAs). DDAs selectively kill cancer cells that overproduce the oncoproteins Epidermal Growth Factor Receptor (EGFR/HER1), the EGFR family member, HER2, or the transcription factor MYC. DDA-induced cell death is mediated by the Death Receptors DR4 and DR5, which activate the Caspase 8-Caspase 3 pro-apoptotic cascade. Current work focuses on elucidating the molecular mechanisms by which DDAs activate DR4/5. (Wang, M., et al. Cell Death Discovery (2019) 5:153; Wang, M., et al., Oncogene (2019) 38:4264) Identification of the First Active Site Inhibitors of the Disulfide Isomerases ERp44 and AGR2 as Novel Anticancer Agents: Affinity-tagged DDA molecules were used to identify the Protein Disulfide Isomerases ERp44, AGR2/3, and PDIA1 as the direct DDA target proteins in cancer cells that mediate DDA actions. Ongoing efforts are focused on understanding the structural features of the DDAs and their target proteins that control DDA target selectivity, and on determining the role of the DDA target enzymes in regulating the disulfide bonding patterns of their client proteins, Death Receptors 4 and 5, and the HER-family receptor tyrosine kinases EGFR and HER2. (Law, M., et al. bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426390)
Mark S Moehle
Visit moehlelab.org for the latest information on my lab!
The overarching goal of the Moehle Laboratory is to understand the cellular, molecular, and circuitry changes that underlie symptoms of neurological disorders. Using this deep understanding of changes to the brain in disease, we will be able to leverage these discoveries into novel therapeutic strategies for these diseases with large unmet clinical needs. Utilizing genetically, pharmacologically, and biochemically defined models of neurological disorders (such as dystonia, Parkinson’s Disease, and Dementias) we will perform cutting edge pharmacological, electrophysiological, behavioral, biochemical, and in vivo fiber photometry techniques to interrogate the cellular, molecular, and circuitry level changes in the central nervous system in these model systems. These studies have the possibility to make substantial advances in our understanding of brain wide changes in diseases such as Parkinson’s Disease, dystonia, and dementias as well as provide the pre-clinical rationale to direct larger drug discovery efforts for unique targets in these disorders.
Lee Sweeney Ph.D.
There are two broad focuses of Dr. Sweeney’s current research program. The first grew out of his desire to understand the molecular basis of muscle contraction, and the molecular motor powering muscle contraction, myosin. He has been working in the area of myosin structure and function since the mid-1980s, and has authored a large number of papers on the subject, beginning in 1986. His lab was the first to publish the use of the baculovirus-SF9 expression system for the heterologous expression of myosin in the early 1990s. They published the first structural evidence for the lever arm hypothesis for myosin in 1995, and at the same time discovered the mechanism for ADP-release-associated load sensing in myosin. In the late 1990’s they hypothesized that myosin VI might be a reverse-direction myosin motor based on its primary sequence, which they were able to demonstrate experimentally. It was a paradigm-shifting discovery and remains the only know reverse-direction myosin. They also unraveled the kinetic basis for the processivity of myosin V, which applies to many classes of unconventional myosins. Recently, they described how actin activates the motor activity of all myosin classes. They are currently focused on the role of unconventional myosins in hearing, as well as evaluating the possibility that they may be drug targets in certain forms of cancer.
The second focus of his research is on muscle disease. This evolved from his desire to understand the processes involved in force generation and transmission by muscle, and diseases that result from defects in the proteins involved. This has included congenital forms of cardiomyopathy as well as muscular dystrophies. He has been working in the area of muscular dystrophy since 1992 and has authored a number of papers on evaluating potential therapeutic targets, beginning in the late 1990s. His lab has been working on the development of AAV gene transfer to liver, skeletal muscle, and to the heart in dogs, as well as small molecule therapies for inherited human diseases. He is the senior author on the paper describing their development of the nonsense suppression drug, PTC 124 (ataluren). His lab continues to work on the development of small molecules for the treatment of muscular dystrophies.
Nikhil Urs Ph.D.
Dopamine (DA) is a catecholamine neurotransmitter found in the mammalian brain and regulates many critical physiological processes such as movement, cognition, motivation, reward/pleasure, and hormone regulation. Dysfunction of the dopamine system has been implicated in many brain disorders, including Parkinson’s disease (PD), schizophrenia, OCD, and ADHD. The goal of the Urs Lab is to study the role of genetic and environmental factors on dopamine neurotransmission and to learn more about the dopamine system by deciphering, a) signaling pathways involved in DA neurotransmission, b) functional dopamine neuronal circuits, and c) how these integrate and manifest behaviorally in an organism (mouse). Using these integrated approaches—in parallel—will allow us to fine-tune dopamine neurotransmission and devise novel drug- and gene-based therapeutic approaches to treat dopamine-related disorders such as PD and schizophrenia.